A New Construction of Riemann Surfaces with Corona

نویسندگان

  • David E. Barrett
  • Jeffrey Diller
  • DAVID E. BARRETT
  • JEFFREY DILLER
چکیده

equivalently [Gar,VIII.2], the corona M(X) \ ι(X) is empty. (Here M(X) is the maximal ideal space of the algebra H∞(X) of bounded holomorphic functions on X and ι is the natural inclusion X ↪→ M(X).) If X does not satisfy the corona theorem then X may be said to have corona. Riemann surfaces known to satisfy the corona theorem include the unit disk [Car], bordered Riemann surfaces [All] [Sto], and various classes of planar domains [GaJo] [Moo]. The question of whether general planar domains satisfy the corona theorem is open. The first construction of a Riemann surface with corona is due to Cole [Gam]. The goal of this paper is to prove the following.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corona Theorem for H∞ on Coverings of Riemann Surfaces of Finite Type

In this paper continuing our work started in [Br1]-[Br3] we prove the corona theorem for the algebra of bounded holomorphic functions defined on an unbranched covering of a Caratheodory hyperbolic Riemann surface of finite type.

متن کامل

Quasi Riemann surfaces

A quasi Riemann surface is defined to be a certain kind of complete metric space Q whose integral currents are analogous to the integral currents of a Riemann surface. In particular, they have properties sufficient to express Cauchy-Riemann equations on Q. The prototypes are the spaces D 0 (Σ)m of integral 0-currents of total mass m in a Riemann surface Σ (usually called the integral 0-cycles o...

متن کامل

New operational matrix for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative

In this paper, we apply spectral method based on the Bernstein polynomials for solving a class of optimal control problems with Jumarie’s modified Riemann-Liouville fractional derivative. In the first step, we introduce the dual basis and operational matrix of product based on the Bernstein basis. Then, we get the Bernstein operational matrix for the Jumarie’s modified Riemann-Liouville fractio...

متن کامل

Correlation Functions for Some Conformal Theories on Riemann Surfaces

We discuss the geometrical connection between 2D conformal field theories, random walks on hyperbolic Riemann surfaces and knot theory. For the wide class of CFT’s with monodromies being the discrete subgroups of SL(2,R I ) the determination of four–point correlation functions are related to construction of topological invariants for random walks on multipunctured Riemann surfaces.

متن کامل

Quantum Riemann

We continue our study of quantum Riemann surfaces initiated in 1, 2, 3]. We construct a one parameter family of deformations of compact Riemann surfaces of genus g 2. Our construction does not require any discretness condition on the value of Planck's constant. It coincides with the construction of 2] in the case when Planck's constant assumes the discrete set of values dictated by geometric qu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996